Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional ionospheric modelling using GPS and GLONASS to estimate ionospheric gradients
نویسنده
چکیده
We estimate spatial gradients in the ionosphere using the Global Positioning System (GPS) and GLONASS (Russian global navigation system) observations, utilising data from multiple GPS stations in the vicinity of Murchison Radio-astronomy Observatory (MRO). In previous work the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array (MWA). Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System (GNSS) stations than is currently available at the MRO.
منابع مشابه
Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS
The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملTomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets
Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...
متن کاملRIMT: A tool for Regional Ionospheric Mapping and Tomography using GPS data
The ionosphere is about 60-1000 km above the earth’s surface, which is actually plasma of ionized gas of the upper atmosphere by solar radiation and high-energy particles from the Sun. The ionized electrons concentrations change with height above earth’s surface, location, time of the day, season, and amount of solar activity. The total electron content (TEC) and electron density profiles are t...
متن کامل